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Mixing in flows down gentle slopes into stratified
environments
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(Received 15 November 1999 and in revised form 13 February 2001)

Observations of the flow of dense fluid into uniformly density-stratified environments
down plane slopes with small inclination to the horizontal (6 20◦) are described, and
a quantitative model for such flows is presented. In these experiments the dense fluid
is released at the top of the slope for a finite period of time. The resulting downslope
gravity current, or downflow, has uniform thickness with a distinct upper boundary,
until it approaches its level of neutral density where the fluid leaves the proximity of the
slope. Turbulent transfers of mass and momentum occur across the upper boundary,
causing a continuous loss of fluid from the downflow in most cases, and associated loss
of momentum. The flow may be characterized by the local values of the Richardson
number Ri, the Reynolds number Re (generally large), and of M = QN3/g′2, where Q
is the (two-dimensional) volume flux, N the buoyancy frequency and g′ the (negative)
buoyancy of the dense fluid. The model for the downflow describes the turbulent
transfers in terms of entrainment, detrainment and drag coefficients, Ee, Ed and k
respectively, and the observations enable the determination of these coefficients in
terms of the local values of M and Ri. The model may be regarded as an extension
of that Ellison & Turner (1959) to stratified environments, describing the consequent
substantial changes in mixing and distribution of the inflow. It permits the modelling
of the bulk properties of these flows in geophysical situations, including shallow and
deep flows in the ocean.

1. Introduction
Gravity currents are flows of dense fluid driven by the difference in buoyancy

between this fluid and its environment, and they are quite common in nature (see for
example Simpson 1997). Many of these natural phenomena occur over sloping terrain,
which increases the driving force of buoyancy. Prominent examples include nocturnal
flows down hillsides, powder snow avalanches, overflows in the ocean such as the
Mediterranean and Bass Strait outflows, and the flow of cold river water into lakes.
Such flows are generally at large Reynolds numbers, and are highly turbulent. Con-
sequently, the most effective way to study them is often in the laboratory, where they
may be generated fairly easily. This paper presents an experimental study of such flows
for small slope angles (here defined to be less than about 20◦), focusing on the mixing
properties associated with them. Most bottom slopes in the ocean lie within this range
of slope angles, so that the results are relevant to oceanic situations. In contrast to pre-
vious experiments of this type, the environmental fluid here is stratified, and this causes
substantial changes to the turbulent eddies and mixing associated with the downflow.

A sudden onset of a steady source of dense fluid at the top of the slope produces a
gravity current that is led by a relatively large ‘head’ of dense fluid, and this head is
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associated with considerable mixing with the environmental fluid (Britter & Linden
1980). For a downslope gravity current caused by the sudden onset of a steady line
source (density ρi) flowing into a homogeneous environment, this head is observed
to move at a uniform speed Uf that is weakly dependent of the slope angle θ, and
depends on the initial volume flux Q0 (per unit slope width) and buoyancy g′0 in the
form

Uf ≈ a(g′0Q0)
1/3, g′0 = g

∆ρ

ρ̄
, (1.1)

where 1 < a < 1.8 depending on slope angle, g is acceleration due to gravity, ∆ρ is
the difference in density between the inflowing and environmental fluid, and ρ̄ is the
mean density of the two. The following downslope flow travels more rapidly by a
factor of approximately 1.7 (Britter & Linden 1980), and the size of the head increases
with time due to this supply of fluid from behind and to inherent mixing with the
environment. This rate of increase of the size of the head increases approximately
linearly with slope angle.

Observations of the flow following the head have been described by Ellison &
Turner (1959), who derived a dynamical model for the bulk properties of the flow,
based on measurements over a broad range of parameters. They showed that the
mean fluid velocity is independent of downslope distance, and is dependent on
slope angle, or more particularly, on the local bulk Richardson number, Ri, which
is approximately uniform with downslope distance. Following the work of Morton,
Taylor & Turner (1956) on vertical buoyant plumes, Ellison & Turner introduced the
concept of turbulent entrainment for downslope flows. This involved the assumption
that the turbulence and associated mixing in the downflowing current would cause a
net motion of environmental fluid towards and into the current, at a local speed that
was proportional to the local mean downslope velocity of the current. The constant of
proportionality is known as the entrainment constant, E. This is essentially a dynamical
similarity assumption, but it is plausible because environmental fluid that is mixed
with the downflow becomes denser than the environment, and hence will also flow in
the downslope direction. Ellison & Turner showed that E is dependent on the local
Richardson number, and incorporated this into a mathematical model for the mean
properties of the flow, as described in more detail in § 3. This kind of model has been
widely used to describe downslope flow in the atmosphere and ocean, with varying
success (see for example Smith 1975; Manins & Sawford 1979; Price & Baringer
1994).

The experiments of Ellison & Turner were for a homogeneous environment, but
the model equations derived from their experiments may be rescaled to include a
stratified environment (Turner 1986) if one assumes that the same physical processes
are operating, in the manner that was done for plumes by Morton et al. (1956). On
this basis, this model has been used to describe flows into stratified environments, but
the present experiments show that this is inappropriate.

The first experiments on downslope flows into continuously stratified environments
were described by Mitsudera & Baines (1992). Here there is an additional parameter,
N, the buoyancy frequency of the initial density stratification ρ0(z) which was uniform
in these experiments, and in the work described in this paper. A related important
parameter is D, the depth below the source where the initial density of the fluid in
the tank equals the inflow density. They are related by

N2 = − g

ρ̄0

dρ0(z)

dz
=
g′0
D

=
g∆ρ0(0)

Dρ̄0

, (1.2)
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where the vertical coordinate z is measured from the level of the source, at the top
of the slope, and ∆ρ0(0) denotes the difference in density between the inflowing and
environmental fluid at this level. This system is governed by four main dimensionless
parameters: the slope angle θ, and the Richardson number Ri0, the Reynolds number
Re, and a parameter M0, defined by

M0 ≡ Q0

(g′0D3)1/2
=
Q0N

3

g′20
, Ri0 =

g′0d̄3 cos θ

Q2
0

, Re =
Q0

ν
, (1.3)

where ν is kinematic viscosity and d̄ is the mean thickness (averaged over waves
and eddies) of the downflowing current. d̄ is an observable property of the flow
that is determined by the other parameters and is largely independent of downslope
distance s in the region of interest, as shown in the following sections. M0 and Ri0
are determined by the initial conditions for the downflow, and these parameters may
be generalized to characterize the current at any height z by defining

M =
QN3

g′2
, Ri =

g′d̄3 cos θ

Q2
, (1.4)

using local values of Q, N and

g′(z, t) =
g∆ρ(z, t)

ρ̄
, (1.5)

where ∆ρ(z, t) is the difference between the mean density of the downflow at height z,
and the environmental fluid at the same level. M = 0 corresponds to a homogeneous
environment, and M increases with increasing stratification, although M(0) ≡M0 < 1
for realistic flows in these experiments.

Mitsudera & Baines (1992) carried out experiments with a slope angle of θ = 6◦,
and Re > 300, and described some properties of the turbulent downflow and the
mixing process that occurred above it. Their observations showed that for 6◦ slopes
the motion of the initial head was described well by (1.1), until the head approached
its level of neutral buoyancy. The gravity current following this head had conspicuous
small-scale mixing taking place at its upper boundary, but otherwise it had a well-
defined mean velocity and thickness. Further, it was noted that, in addition to the
main horizontal plume of fluid leaving the slope near the point where the dense fluid
reached its ambient density, there was a second, broader, weaker plume higher up, fed
by a complex three-dimensional circulation emanating from the mixing region above
the downflow. The vertical distance over which these downslope flows were observed
was relatively small (20 cm from shelf to bottom of tank), and this made some aspects
of the interpretation uncertain. The experiments described in the present paper were
carried out with a longer slope, and covered a range of slope angles from 3◦ to 12◦,
with some supplementary experiments on slopes of 20◦. Flows down steeper slopes
have different properties, and will be described elsewhere. Attention here is focused
on the bulk properties of the main current, the effect of stratification on entrainment
into the current and its converse, ‘detrainment’ of fluid from it into the environment.
As shown below, the mean properties of the current including these features may
be inferred from density soundings taken before and after the experiment. In this
paper, I next describe the experiment and techniques involved, and then proceed to
the development of the theoretical model for the downslope flow, and the analysis
and interpretation of the results. An early version of some of these results, restricted
to experiments at θ = 6◦, was presented at the IMA Conference on Stratified Flows
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Figure 1. Plan and side views of the tank used in these experiments, showing the configuration for
the 6◦ slope. A central vertical section of the flow on the slope was illuminated by a thin sheet of
laser light from above, and video-recorded by viewing from the side. Only part of the total width of
the tank was used, which enables the simulation of an effectively longer tank for these experiments.
All measurements in cm.

in Dundee, September 1996, and published as Baines (1999). Experiments on flows
descending through a density interface have recently been described by Monaghan et
al. (1999), but the processes observed there differ substantially from those described
here.

2. The experiment and qualitative observations
The experiments were carried out in a glass-sided tank as illustrated in figure 1.

This tank was rectangular in cross-section, 80 cm high with internal dimensions of
299 cm in length and 38 cm in width, open at the top and with a solid horizontal
bottom. The effective working length of the tank was extended by the device of
inserting a thin vertical Perspex partition, extending from one end to a point 25 cm
short of the other end, and with a uniform gap of 23 cm on one side and 15 cm on the
other. The main working region of the tank was in the wider region of width 23 cm,
and the experiment was made two-dimensional in this region as much as possible.
For the low-frequency motions and changes produced in the ambient stratification,
the fluid behind the partition could be regarded as a two-dimensional extension of
the working region. A horizontal platform or shelf 40 cm long with a plane downward
sloping extension 2 m in length was inserted at the closed end of this region. The
height of the horizontal platform varied from 20 to 40 cm depending on the slope
angle. A number of different slope angles were used, principally 3◦, 4.5◦, 6◦ and 12◦,
to the horizontal, with some additional runs at 20◦. There was a fixed sluice-type gate
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Q0 g′0 N D Re d̄
M0 (cm2 s−1) (cm s−2) (s−1) (cm) = Q0/ν cm(±15%) Ri0 |Zb|

(a) 0.0130 1.32 13.01 1.19 9.2 132 0.8 3.82 0.9
0.0150 1.32 9.29 0.99 9.4 132 0.74 2.15 0.86
0.0408 2.73 4.49 0.67 10.0 273 1.33 1.42 0.91
0.0435 3.44 8.18 0.94 9.1 344 1.05 0.80 0.94
0.0443 4.5 8.36 0.88 10.7 450 1.33 0.97 0.83
0.0549 4.85 8.47 0.93 9.7 485 1.28 0.75 0.89
0.1016 8.39 8.95 0.99 9.1 839 1.4 0.35 0.8
0.1625 12.62 8.17 0.95 9.0 1262 1.61 0.21 0.8
0.1858 12.62 7.38 0.929 8.55 1262 1.92 0.328 0.965
0.1929 17.14 8.95 0.96 9.6 1714 2 0.24 0.83
0.2215 15.45 6.41 0.84 9.1 1545 2.2 0.29 0.875

(b) 0.0089 1.32 9.04 0.819 13.46 132 0.36 0.241 0.93
0.0291 4.15 8.84 0.818 13.21 415 0.88 0.349 0.898
0.0423 6.97 9.32 0.808 14.28 697 0.99 0.186 0.874
0.0697 10.5 9.53 0.844 13.36 1050 1.21 0.153 0.902
0.0768 6.97 5.85 0.723 11.21 697 1.4 0.330 0.825
0.0876 12.62 8.06 0.767 13.71 1262 1.47 0.16 0.896
0.1485 9.79 3.51 0.572 10.74 979 1.75 0.196 0.856

(c) 0.0012 0.401 26.96 1.29 16.3 40 0.4 10.7
0.0025 1.11 27.65 1.20 19.2 111 0.5 2.81 0.93
0.0036 1.82 30.04 1.21 20.4 182 0.5 1.13 0.954
0.0062 2.67 29.61 1.27 18.5 267 0.5 0.52 0.971
0.0068 3.44 31.61 1.26 20.0 344 0.5 0.33 0.911
0.0110 5.56 31.63 1.26 20.1 556 0.7 0.35 0.945
0.0184 8.39 23.88 1.08 20.59 839 0.9 0.25 0.913
0.0362 6.26 9.43 0.80 14.7 626 0.9 0.17 0.901
0.0445 8.39 18.22 1.21 12.5 839 0.8 0.13 0.889
0.0614 8.39 6.81 0.70 14.0 839 0.9 0.070 0.773
0.0655 11.21 8.85 0.77 14.9 1121 0.9 0.051 0.755
0.0932 11.21 5.75 0.65 13.6 1121 1.08 0.057 0.748
0.0936 8.39 7.58 0.86 10.2 839 0.83 0.061 0.879

(d) 0.0010 0.966 26.7 0.884 34.2 96.6 0.35 1.20 0.971
0.0026 2.733 28.1 0.913 33.7 273 0.65 1.01 0.936
0.005 5.56 31.9 0.971 33.8 556 0.75 0.43 0.918
0.0063 4.15 15.4 0.711 30.5 415 0.6 0.19 0.903
0.0103 8.38 17.6 0.724 33.6 838 0.9 0.18 0.871
0.0306 5.56 5.66 0.561 18.0 556 0.75 0.075 0.764
0.0612 11.21 7.89 0.698 16.2 1121 0.92 0.048 0.739
0.0794 11.21 5.46 0.595 15.4 1121 1.0 0.042 0.734
0.0808 11.21 4.97 0.563 15.7 1121 1.22 0.070 0.69

Table 1. Parameters for the experiments (see text for the definitions), including the observed values
of d̄, Ri0 and |Zb|. (a) 3◦ slope, (b) 4.5◦ slope, (c) 6◦ slope, (d) 12◦ slope

consisting of a vertical barrier terminated at its bottom by a horizontal cylinder of
radius 2 cm, leaving a gap of (typically) 1 cm above the horizontal platform below.
For the slope angles of 6◦ and 12◦, this barrier was located 31 cm from the endwall,
and for slope angles of 3◦, 4.5◦ and 20◦, it was at 39 cm from the endwall. Before each
experiment the tank was filled with stratified fluid to a level above this gap.

During the experiment, dense fluid was supplied by a hose from an external reservoir
to an area behind a region of wire mesh on the platform near the end of the tank,
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behind the sluice gate. This wire mesh was inserted to make the supply approximately
uniform across the width of the tank. An additional solid barrier was inserted between
the wire mesh and the sluice gate prior to each run. The commencement procedure
then consisted of the removal (by vacuum cleaner) of all ambient fluid behind this
temporary barrier, and its subsequent replacement by dense fluid from the hose.
When the surface of this dense fluid equalled that of the ambient fluid in the tank, the
temporary barrier was removed, giving a sudden commencement at the removal time
to the release of continuously supplied dense fluid. This fluid then flowed through the
gap under the sluice barrier and down the slope as a gravity current. For runs with
large flow rates at the smaller slope angles, where the observed value of d̄ is greater
than 1 cm, the width of the gap was increased to 2 cm, in order to avoid hydraulic
jumps occurring immediately downstream. Such jumps are undesirable because the
mixing associated with them corrupts the experiment, and several runs had to be
discarded for this reason.

At the start of an experiment, the tank was filled with density-stratified fluid that
was produced by the familiar two-tank mixing procedure with salt water. This filled
the whole of the tank including the region on the far side of the Perspex partition and
the region underneath the slope and horizontal platform. The purpose of this was
to have an approximately uniform stratification in the tank, by having a horizontal
cross-sectional area that was uniform with height during filling. After filling, the
gaps connecting the region beneath the slope and platform were closed and sealed,
so that the fluid there was isolated and not involved in the subsequent experiment.
After these gaps were closed and all motion due to filling had subsided, the vertical
density profile was measured by a conductivity probe that was calibrated at the top
and bottom by samples measured in an Anton Paar densitometer. This profile was
designated ρ0(z), with z positive upwards and the origin taken at the level of the
platform of the source.

The main experiment was performed by suddenly releasing dense fluid of density
ρi at the top of the slope in the manner described above. This inflow was continued
at a constant rate that was set and monitored by a flow meter in the inflow hose,
and lasted for a fixed time that depended on the flow rate and ranged between 2 and
6 minutes. Various values of the inflow rate, inflow density and initial density gradient
were used in a variety of experiments for each slope angle, and the details of these
are given in table 1(a–d) which contain values of the controlling parameters and some
key observations. The inflowing fluid was dyed with fluorescene, and illuminated in
a thin central vertical section by a scanned beam from an argon ion laser, which
gave a clear picture of a vertical cross-section of the motion. This cross-section was
recorded on video tape for at least part of most runs. Overall observations of these
flows showed that they had the general character of a gravity current flowing down
the slope, with a broadly two-dimensional form and a distinct upper boundary where

Figure 2. A time sequence of the development of the flow for a typical experiment at θ = 6◦,
with the inflowing dense fluid dyed with fluorescene (M0 = 0.0058, Re = 273). These pictures show
instantaneous vertical sections near the centreline of the tank, illuminated by a thin vertical sheet
of light from a scanned laser beam. Frames (a) and (b) show the initial gravity current head, and
(d) is at a much later time than the first three. Frames (b–d) show the steady dense downflow with
its main outflow at the bottom, and the growth of mixed, detrained fluid over the range of depths
between the level of the source and this main outflow. The accumulation of detrained fluid is seen
in the increasing intensity of the dye in the region above the main downflow, which slowly moves
to the left.
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Figure 2. For caption see facing page.
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turbulent mixing occurred. This flow had the initial familiar head structure (Britter &
Linden 1980) with the approximately steady (in the mean) current following. Figure 2
shows a time sequence during the early stages of a typical run at θ = 6◦, and the
gravity current head is seen in the top frame. Compared with flows into homogeneous
environments, these flows differ in that the fluid only penetrates to a level slightly
above the level z = −D where ρi equals ρ0(z), and this is denoted by the lowest
levels reached by the dyed fluid in figure 2. During the downflow, dyed dense fluid
mixed with some of the undyed environmental fluid, with the result that at the end
of the run, all fluid that had come into contact with the inflowing fluid was ‘tagged’
and thereby identified as dyed fluid. In a typical run, when all motion had ceased,
the dyed fluid was (often) concentrated at a level that was slightly above a vertical
distance D below the level of the shelf, but it was also present throughout the depth
range between the shelf and this level. This implied that some inflowing fluid had
become mixed with its environment and found its own level somewhere above its
initial density, and the process causing this was continuous in ρ and z. This process
of fluid leaving the main current and entering the environment is termed detrainment,
and its initial development can be clearly seen in figure 2.

Observations of the flow during the runs with θ 6 20◦ showed that three distinct
regions of flow may be identified, as follows. In region I, occupying the first 3 cm or
so in depth below the source, the flow emerges from the source region and adjusts to
a mean state on the slope. For the runs where Re < 700 (approximately), the dense
fluid emerges from under the sluice gate in an approximately laminar state. It then
accelerates down the slope and two-dimensional Kelvin–Helmholtz billows form. This
leads to irregular three-dimensional wave patterns on the interface and turbulence
further down the slope. When Re > 700 (approximately), the flow is generally
turbulent on exit, but in both cases the flow settles down to a mean state of uniform
thickness of the downflowing layer. When this has become fully established the flow
is identified as region II; here the mean layer thickness d̄ remains approximately
constant with downslope distance, and this persists for most of the remainder of the
downflow. This constancy of d̄ with s was tested by examining videotapes, and was
found in all runs with the possible exception of some at 12◦ slope; in the latter, there
was a suggestion of an overall decrease in d̄ of up to 20% over the length of region
II. Figure 3 shows the form of the interface for three representative runs at slope
angles of 3◦, 6◦ and 12◦. Several features can be seen in these instantaneous pictures.
These include waves on the interface, wisps of fluid indicating fluid detrained from the
dense layer, and evidence of this detrainment in the fluid above. The mean thickness
d̄ of the downflowing current was measured from direct observations during the runs
and also from videotape records. These mean values are given in table 1 (the runs at
6◦ are essentially the same as those described in Baines (1999), but some entries in
table 1 of that paper differ slightly from table 1(c) here, because of minor corrections
to the density and flow rate measurements). The flow at slope angle 3◦ is significantly
less turbulent than that at the steeper angles, for the same values of M0.

Region II ends when the dense fluid approaches its neutral density level, and
the layer thickens and spreads into the environment, forming region III; d̄ therefore
reaches a potentially large value in this region. Below region III the fluid is undisturbed
for θ 6 20◦, but for θ > 30◦ there is a region IV in which the downflow overshoots
its neutral level because of its inertia, and then returns. It should be reiterated
that in each of these runs, there was an extensive central region between the initial
adjustment region (region I) and region III below, in which no systematic trend in d̄
with downslope distance could be discerned. There was, however, general unsteadiness



Flows down slopes into stratified environments 245

(a)

(b)

(c)

Figure 3. Photographs showing the central region (region II) of three typical downflows for
different slope angles, each taken during the middle (approximately) of the run period. (a) 3◦ slope,
M0 = 0.011; (b) 6◦ slope, M0 = 0.083; (c) 12◦ slope, M0 = 0.021. As in figure 2 the inflowing fluid
has been dyed with fluorescene, and the laser illumination shows a vertical section. Note the sharp
upper boundary of the dense main current, as in figure 2, and the variation with slope angle. In (a)
and (b) all the flow lies in region II, whereas in (c) region I is visible at the top of the slope.

in these downflows, with continual wave motion and turbulence on short length and
time scales, and consequent uncertainties in the observations of d̄.

Figure 4 presents quantitative examples of flow at 6◦ slope, showing velocity profiles
(measured by bead tracking) and a density profile (measured by conductivity probe) at
various positions on the slope. These are effectively instantaneous sample observations
(particularly for velocity), and are only indicative of the mean profiles. However, they
illustrate the sharpness of the interface, and the contrast between the dense flowing
layer and the relatively stationary fluid above it.

In summary, region I denotes the region of adjustment from the sluice gate to
the ‘steady state’ of region II, which is the main region of the downflow. Region
III denotes the termination of this region, where the remaining fluid (if any) in the
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Figure 4. (a) Nearly steady velocity profiles measured by particle tracking of tracers illuminated
by a thin laser sheet. The slope is 6◦, with M0 = 0.02, Re = 290. The main downflow is clearly seen,
although the shape of the profile is variable because of the limited resolution of the technique. An
upper level outflow of detrained fluid is also evident. Distances marked denote downslope distance
of the measured profiles from the top of the slope. (b) A typical density profile taken by a traversing
conductivity probe during a run, showing the sharpness of the interface and the perturbed stratified
region above. M0 = 0.05, Re = 273.

downfIow leaves the vicinity of the slope to find its ambient, neutral level. In region
II there are three identifiable regions of fluid motion as one moves outward in a
direction normal to the slope. First, there is the downslope-flowing region on the
surface of the slope, with mean thickness d̄, bounded above by a turbulent interface.
Secondly, immediately above this current the flow is in a weakly turbulent state
with relatively small velocities, but with a discernible three-dimensional mean flow
structure (Mitsudera & Baines 1992). Here the mean density surfaces are observed
to have a small upward inclination toward the current on the slope (see § 4). Further
away from the slope, the flow is laminar and the motion is nearly horizontal. The
motion in these regions outside the main downflow is due to mass and buoyancy
fluxes at the interface, which cause the fluid to move under gravity to its equilibrium
density level in the environment.
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Figure 5. Initial and final density soundings for the run with θ = 6◦, M0 = 0.0184. These profiles
were taken when the fluid in the tank was effectively at rest, and this figure shows the nature of the
differences between the profiles for all runs. Here the height coordinate denotes height above the
floor of the tank.

After the inflow ceased, some motion persisted in the form of low-frequency internal
waves in the tank, which took up to 30 minutes to decay through viscous dissipation.
When all this motion had died away after a downflow event, the density profile was
again measured (several times) by the same techniques and with the same accuracy as
the initial density profile, and the comparisons between these two profiles constitute
the main quantitative data from the experiment. An example of initial and final
density profiles is shown in figure 5. The conductivity probe was re-calibrated at the
end of the experiment. Generally this showed slight differences from the calibration
at the beginning of the experiment, so that the mean of the two could be used for all
initial and final profiles, except for a small constant offset that implied a uniform drift
in the probe apparatus. This was removed by equating the signal in the ‘before’ and
‘after’ profiles in the fluid near the bottom of the tank, well below the active levels of
the experiment, where the density was not affected by the downflow. The length of
time for each run was determined by three factors. First, it needed to be long enough
to give measurable differences between the two profiles. Secondly, it is necessary to
minimize the effect of the head relative to that of the following current, whose effect
increases with time. Thirdly, it should be short enough that the net inflow was not so
large as to displace the mean isopycnals too far from their initial positions relative to
the topography, to invalidate the differencing process. It was for this reason that the
volume of the host fluid in the tank was made as large as possible, to increase the
running time, by including the region of the tank behind the partition, as described
above. Only one run could be carried out with each stratified fill, implying at most
one run each day, so that a considerable amount of time and effort was required to
accumulate data from a sufficiently large range of parameter values.

The observed values of d̄ shown in table 1 enable the calculation of the local bulk
Richardson number based on the local volume flux Q and the local density difference
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Figure 7. Coordinates and notation for the downslope flow model of § 3.

∆ρ, defined by (1.4). Values of Ri at the top of the slope, using Q0 and ∆ρ0, are
denoted Ri0 as defined by (1.3), and are also given in the table.

3. Theoretical analysis – models for downslope flow
We first describe the conceptual model and equations that are used to interpret the

observations. This model describes the bulk characteristics of a downslope flow, as do
most previous models, but here we allow for two-way exchange between the current
and its environment, as the observations described in § 2 imply. This requires careful
definition and analysis of the quantities involved. A schematic diagram illustrating
the physical processes affecting the downflow, and incorporated in this model, is
shown in figure 6. We take a plane slope at angle θ to the horizontal with axes as
shown in figure 7, with s directed downslope and r normal to it, and with a current
of dense fluid of thickness d(s, t) and velocity u(r, s, t) in the s-direction and w(r, s, t)
in the r-direction. These flows are generally turbulent, with waves and eddies on the
interface, but for present purposes we are interested in the mean values on longer
time scales than those of these eddies. Hence we define

d = d̄+ d′, u = ū+ u′, w = w̄ + w′, (3.1)

where the overbar denotes averages over time scales much longer than that of the
eddies, and the averages of u′ and w′ are zero; d̄ denotes the observed mean position
of the interface, but the mean value of d′ is in general non-zero, as described below.
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The surface r = d(s, t) is a material surface at any given instant, but as observed in
the experiments it does not remain continuous. Folds and extensions appear in it,
and small loops and wisps break off carrying fluid in both directions. Hence fluid
moves across the interface, detrained fluid leaving the dense layer with a net velocity
represented by wd, and entrained fluid entering it with a velocity represented by
we, where wd is positive upwards and we positive downwards (in the direction of r
decreasing). d̄ defines the mean position of this surface, which is identified with the
mean position of the observed surface in the experiments. If r = d is assumed to be
a continuous material surface, we have

w(d, s, t) =
∂d

∂t
+ u(d, s, t)

∂d

∂s
= −

∫ d

0

∂u

∂s
dr, (3.2)

so that

∂d

∂t
+
∂

∂s

∫ d

0

udr = 0. (3.3)

However, if r = d̄ is the mean position of the interface, the observation that there is
net transfer of fluid across this level implies that d̄′ is in general not constant, and
that (3.3) should be replaced by

∂d̄

∂t
+
∂Q

∂s
= −∂d̄

′

∂t
= −w̄ = −(w̄d − w̄e), (3.4)

where Q is the total downslope flow, given by

Q(s, t) =

∫ d

0

udr. (3.5)

From dimensional analysis, following Ellison & Turner (1959) and List & Imberger
(1973) we expect the turbulent transfer term ∂d̄′/∂t to scale with the mean velocity
Q/d̄, with a factor that depends on dimensionless quantities. Hence we write

∂d̄

∂t
+
∂Q

∂s
= (Ee − Ed)Q

d̄
, (3.6)

where

w̄e = EeQ/d̄, w̄d = EdQ/d̄, (3.7)

and Ee and Ed are positive entrainment and detrainment coefficients, with forms yet
to be determined. Note that if the two processes of entrainment and detrainment
exactly cancel, there is no net flux across the interface but there is still a loss of dense
fluid from the current, and a flux of environmental fluid into it.

The density field may be written in the form

ρ(r, s, t) = ρ̄0 +
dρ0

dz
(r cos θ − s sin θ) + ∆ρ(r, s, t), (3.8)

where ρ0(z) is the ambient stratification in the tank, ρ̄0 is a mean density and ∆ρ(r, s, t)
is the increment in density of the dense fluid in the downflow. Writing (as in (1.5))

g′(r, s, t) =
g∆ρ

ρ̄0

, (3.9)

conservation of mass (Dρ/Dt = 0) for an incompressible fluid then gives

∂g′

∂t
+
∂

∂s
(ug′) +

∂

∂r
(wg′) = N2(w cos θ − u sin θ), (3.10)
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where N is the buoyancy frequency, given by N2 = −(g/ρ̄0)(dρ0/dz). Integrating over
the depth of the dense layer then gives

∂

∂t

∫ d

0

g′dr +
∂

∂s

∫ d

0

ug′dr + g′(d)
(
w(d)− u(d)∂d

∂s
− ∂d

∂t

)
= N2

(
cos θ

∫ d

0

wdr − sin θ

∫ d

0

udr

)
. (3.11)

From (3.2), the third term (with g′(d) as a factor) vanishes for a continuous material
surface but, as discussed above, this surface is in general not continuous and there is
a two-way flux across it. Fluid leaving the current has the momentum and buoyancy
of the downflow, whereas fluid entering it is assumed to have zero momentum and the
density of the environment, implying zero buoyancy. Hence, with these entrainment
and detrainment processes present, taking the mean of the third term in (3.11) gives
g′(d)wd, where g′(d) denotes the density at the upper boundary, inside the current.
The mean of the whole of (3.11), averaging over the eddies, then gives

∂

∂t
Gd̄+

∂B

∂s
+ g′(d)wd = −N2

(
sin θ

∫ d

0

udr − cos θ

∫ d

0

wdr

)
, (3.12)

where G is the buoyancy and B is the buoyancy flux, given respectively by

G =
1

d̄

∫ d

0

g′dr, B =

∫ d

0

ug′dr. (3.13)

In particular, G0 = G(s = 0) = g′0. We also have∣∣∣∫ d

0

wdr
∣∣∣ ∼ 0.5d̄|w̄ + wd − we| � Q tan θ, (3.14)

given the smallness of the slope of the mean interface, and the entrainment and
detrainment velocities (see below), and

g′(d)wd = Edg
′(d̄)Q/d̄ = EdGQ/d̄, (3.15)

since the entrained environmental fluid has zero buoyancy. Hence (3.12) may be
written

∂

∂t
Gd̄+

∂B

∂s
= −N2Q sin θ − EdGQ/d̄. (3.16)

The equation of motion for flow in the dense layer, assuming hydrostatic pressure, is

∂u

∂t
+
∂

∂s
u2 +

∂

∂r
uw = − cos θ

∂

∂s

∫ d

r

g′dr + g′ sin θ + ν∇2u. (3.17)

Integrating across the thickness of the layer gives

∂

∂t

∫ d

0

udr +
∂

∂s

∫ d

0

u2dr = sin θ

∫ d

0

g′dr − cos θ
∂

∂s

∫ d

0

rg′dr − u(d)

×
(
w(d)− u∂d

∂s
− ∂d

∂t

)
− τ(d)− τ(0), (3.18)

where τ(d) and τ(0) denote frictional stresses on the layer at its upper and lower
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boundaries respectively. The pressure gradient term is

cos θ
∂

∂s

∫ d

0

rg′dr ≈ 1

2
cos θ

∂

∂s
(d̄2G) = O

(
1

2
cos θ G0d̄ sin θ

d̄

D

)
� G0d̄ sin θ if d̄/D � 1. (3.19)

Hence this pressure gradient term is generally small compared with the buoyancy
term Gd̄ sin θ, but is included below for completeness. If we take the mean value of
(3.18), averaging over the eddies as in (3.11), (3.15), we have

u(d)

(
w(d)− u∂d

∂s
− ∂d

∂t

)
= u(d)wd = EdQ

2/d̄2. (3.20)

Here, as for the buoyancy (in (3.11), (3.12)), the entrained fluid from outside the
current is assumed to have zero (or at least negligibly small) downslope momentum,
and hence the we term makes no contribution. Hence (3.18) becomes

∂Q

∂t
+
∂S

∂s
= Gd̄ sin θ − (k + CDL)Q2/d̄2 − cos θ

2

∂

∂s
(d̄2G), (3.21)

where CDL is the drag coefficient of the solid sloping bottom (and sidewalls), k is a
drag coefficient for the overlying layer (with τ(0) = CDLQ

2/d̄2, τ(d) = CDUQ
2/d̄2), and

S =

∫ d

0

u2dr. (3.22)

If we assume that the downslope transport (of mass, momentum and buoyancy) by
eddies within the current is small compared with that carried by the mean motion,
we may write

S = Q2/d̄, B = QG. (3.23)

If one also assumes that the mean state of the flow is steady with time, the bulk
equations (3.6), (3.16) and (3.21) for the downflow may be written

∂Q

∂s
= (Ee − Ed)Q/d̄, (3.24)

∂

∂s

Q2

d̄
= Gd̄ sin θ − (k + CDL)Q2/d̄2 − cos θ

2

∂

∂s
(d̄2G), (3.25)

∂G

∂s
= −N2 sin θ − EeG/d̄. (3.26)

The equations (3.24)–(3.26) have been derived by using the qualitative features of the
observations, and they will be used as a basis for quantitative interpretation of the
experimental results. We note that these equations involve Q, G, d̄, N and θ. From
these we may construct the two dimensionless parameters M and Ri, as defined by
(1.4). We do not expect Ee, Ed and k to be constant in general, but rather that they
will be functions of the dimensionless parameters M, Ri, θ and Re. For the most part,
we assume that Re is large enough for the flow to be sufficiently turbulent that the
dependence on its value is minimal. Reynolds number effects are apparent in some
runs with Re < 200, and these have been excluded from the analysis or treated with
circumspection.

We may contrast the above model with the equations and model of Ellison & Turner
(1959). In their model of dense downslope flows into a homogeneous environment,
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Figure 8. Representative example of the functions (a) Q̃(ρ), (b) Q̂(Z) and (c) V̂ (Z), for the run with
θ = 6◦, M0 = 0.0362. (a) The downslope volume flux is shown as a function of density, averaged
over the whole downflow, and (b) and (c) show the corresponding mean downslope volume flux in
the current and outflow velocity respectively, as functions of scaled depth Z = z/D. Positive values

of V̂ (Z) denote flow toward the slope.

there was no well-defined interface between the environment and the downflow.
Instead, in a steady-state flow, the profiles of velocity and density perturbation
extended further and further in the direction normal to the slope as one moved
further downslope (see their figure 6, reproduced as figure 6.12 in Turner 1973). The
variables corresponding to Q, B and S were defined as integrals in the r-direction
from the slope to infinity. Growth in Q with distance downslope was interpreted as
entrainment of the environment into this total flow, and the concept of detrainment
did not enter the picture. The equations obtained comprised (3.24) above, with Eh
(for homogeneous fluids) replacing (Ee − Ed), (3.25) with the last two terms omitted,
and dB/ds = 0. The entrainment coefficient Eh inferred from their experiments is
larger than the values of Ee obtained here, because all environmental fluid that makes
contact with the dense inflow is effectively entrained, by this definition. Nonetheless,
as figure 4 of Ellison & Turner also shows, the dense, rapidly moving bottom current
is still present in their experiments, and could in principle still be treated as a separate
entity from the fluid above it.

4. Analysis of observations
The observations described in § 2 yield the initial and final states of the stratification,

before and after the downflow event. In these steady states the fluid properties are
horizontally homogeneous. They would be the same if the tank geometry were altered
to be two-dimensional, with the same area at each depth and a uniform width of
23 cm, and we assume this shape for the present analysis. At the depths occupied by
the slope, the length of this hypothetical two-dimensional tank is

l(z) = 454.0 + z/ tan θ cm, (4.1)



Flows down slopes into stratified environments 253

where z is the vertical coordinate measured from the level of the shelf as before,
and has negative values in the region of interest. From the initial and final density
profiles, such as those shown in figure 5, the increase in height of each density
surface as a result of the downflow may be measured. The raw data of these profiles
contain some small-scale noise, due to the slightly irregular motion of the probe
during descent (scarely visible in the unsmoothed profiles of figure 5). This noise can
have an undesirable prominence when differences are taken, and hence it is removed
by smoothing the profiles by using the Fourier transform based smoothing routine
SMOOFT from Press et al. (1986). From the resulting initial and final heights for
a given density value, a mean value of l(z) is obtained from (4.1), and hence the
increased volume of fluid below this density surface can be calculated. Dividing this
by the effective running time of the inflow and the effective tank width then gives
the mean downward flux across this density surface during the experiment, per unit
width of the tank. Scaling this with Q0 gives the function Q̃(ρ), and an example is
shown in figure 8(a).

From Q̃(ρ) we may calculate the net downward flow at a fixed height z from

Q(z) = Q0

∫ ρf (z)

ρi(z)

Q̃(ρ)dρ/(ρf(z)− ρi(z)), (4.2)

≈ Q0(Q̃(ρi(z)) + Q̃(ρf(z)))/2, (4.3)

where ρi(z) and ρf(z) denote the initial and final density values at height z respectively.
Expressing this in terms of Z = z/D, we have

Q̂(Z) = Q(z)/Q0, (4.4)

where Q̂(Z) is therefore an appropriately stretched version of Q̃(ρ). The mean outflow
velocity v(z) from the downflow (with the sign convention that v is negative for
outflow) is then given by

v(z) = −dQ(z)

dz
, (4.5)

and in dimensionless form by

V̂ (Z) = v(z)D/Q0 = −dQ̂(Z)

dZ
. (4.6)

Examples of Q̂(Z) and V̂ (Z) are shown in figure 8(b, c).
The initial and final density profiles thus give us the observed dependence of the

downslope flux of fluid, and the net outflow from the current, with depth. There are
two complicating factors that should be borne in mind when interpreting Q̂ and V̂ .
First, as the dense fluid flows into the tank, the mean isopycnals rise according to
the quantity of fluid that has penetrated below their level. The net rise is zero at the
lowest level of penetration, and increases to a typical value of about 2–3 cm near the
top of the slope at the end of a run. This changes the environmental stratification,
but the effect is small, and has been neglected in the derivation of (3.24)–(3.26) where
a stationary environment has been assumed. Secondly, visual observations during a
run indicate that the mean position of the isopycnals near region II of the downflow
are not exactly horizontal, but slope upward as they approach it. Hence the mean
environmental density seen by the main downflow is slightly greater than that given
by assuming a stationary environment. The reason for this is clear. In region II there
is net detrainment (see below) of dense fluid, which leaves the current in the form
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Figure 9. Dependence of the observed layer depth on M0 for each slope angle.
For constant, D, note the systematic decrease in d̄ with θ and increase with M0.

of thin wisps that mix with the environmental fluid, causing a slight increase in the
local mean density of the latter. Hence the mean density surfaces slope upward close
to the current. This effect appears to be small, and it has also been neglected in the
derivation of equations (3.24)–(3.26).

There are, therefore, three main features of the observations that can be used to
estimate the unknown quantities Ee, Ed and k + CDL in (3.24)–(3.26). These are: the
constancy and value of d̄, the level Zb of the outflow of the remaining fluid at the
bottom of the downflow, and the form of the profiles Q̂(Z) and V̂ (Z). The observed
values of d̄ are given in table 1, and are plotted in figure 9 as functions of M0 and
scaled with D. This shows that power law relationships of the form

d̄/D = AM
µ
0 , (4.7)

where A and µ are constants, exist for each slope angle. For any given value of M0,
d̄/D decreases with increasing slope angle from θ = 3◦ to 12◦, and this trend seems
quite robust. The exponent µ varies from 0.35 (for θ = 6◦) to 0.67 (for θ = 4.5◦). Given
the uncertainties in measurement (±15%) these differences may not be significant, as
changing the value of an outlying point by this magnitude can significantly alter the
value of the mean exponent. A mean value for µ over the four slope angles is 0.49.

Profiles of the net downslope flux Q̂(Z) as a function of depth (or downslope
distance) for a representative selection of different M0 values at slope angles of 3◦,
6◦ and 12◦ are shown in figure 10, and (nearly) complete sets of the corresponding
derivative functions V̂ (Z) are shown in figure 11. These V̂ profiles denote the net
outflow of fluid into the environment, as a function of depth. If there were no
entrainment or detrainment in these downflows, the Q̂(Z) curves would be equal to
unity for −1 < Z < 0, and zero for Z < −1. The V̂ (Z) curves would then be zero for
Z < 0, except for a negative delta-function ‘spike’ at Z = −1, so that the departure
from these ‘ideal’ shapes gives a measure of the transfer properties between the dense
downflow and its original environment. At the top of the slope we may expect that
Q(0) = Q0, and for θ = 3◦ this is generally the case, except that Q(0) is slightly larger
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Figure 10. The downslope volume flux Q̂ as a function of depth Z for the slopes (a) 3◦, (b) 6◦ and
(c) 12◦. Only a representative selection of runs are shown in each case, for clarity, and the symbols
denote every tenth datum point.

than this for the larger Q0 values. This is attributed to a small amount of entrainment
in region I, near the gate. At greater depths in figure 10(a), a gradual decrease in Q̂(Z)
is evident, and then a more rapid decrease to zero near the effective level of neutral
buoyancy, Zb. For small M0, the curves do tend to approximate the ‘ideal’ (no-mixing)
shape, but as M0 increases the decrease in net downflow occurs over a broader range
of depths. The V̂ (Z) curves for 3◦ slope (figure 11a) show a corresponding spike
above Z = −1 for small M0, but the outflow becomes more extensive with increasing
M0. A small amount of inflow due to initial entrainment near Z = 0 is also evident
in some of these curves.

For the 6◦ slope, the Q̂(Z) curves for small M0 are similar to those for the 3◦ case,
and as M0 increases, they evolve in a similar manner (the curve for M0 = 0.0013 has
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Figure 11 (a, b). For caption see facing page.
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Figure 11. Profiles of the outflow function V̂ (Z), obtained as the derivative of the curves in figure 8,
for (a) 3◦, (b) 6◦ and (c) 12◦. Negative values imply flow away from the downflow. The curves are
characterized by their M0 values given in table 1.

an anomalously low Reynolds number (Re = 40), and is excluded from subsequent
analysis). The V̂ (Z) curves for the 6◦ slope (in figure 11b) for small M0 show the
expected shape except that there are small oscillations present over most of the length.
These oscillations may also be seen in the Q̂(Z) curves, though they are less apparent,
and after careful analysis they have been accepted as real. They progressively decrease
in amplitude as M0 increases, and are not evident for M0 greater than 0.03. They are
attributed to the effects of columnar disturbance modes in the stratification, which are
forced by the large concentrated outflow near Z = −1; they are less conspicuous for
the 3◦ experiments, apparently because the main outflow (scaled with D) is broader
there. This concentrated outflow may be regarded as an intrusion layer into the
stratified environment, and such intrusions are known to excite columnar disturbance
modes, where the mode with largest amplitude has the vertical scale of the intrusion
itself (Imberger, Thompson & Fandry 1976; Wong 1998). Such modes cause nearly
steady motions in the stratified fluid above the downflow, and this pattern of motion
apparently causes the variations in the detrainment shown by these curves. Like the
3◦ slope, the V̂ (Z) curves for 6◦ also show the main peak in outflow becoming less
pronounced and generally occurring at higher locations as M0 increases.

The 6◦ runs have Q̂ values larger than unity near the top of the slope for larger
M0 values (figure 10b). In some cases Q̂(0) reaches magnitudes of 1.5, implying that
the net downflow at the top of the slope has increased by up to 50%. This is due
to increased initial mixing in region I, and is reflected in the inflow at upper levels
seen in the V̂ curves. These curves also show an upper level peak in the outflow
(near Z ≈ −0.4), that is interpreted as this fluid mixed in region I finding its neutral
level. For the purposes of estimating the entrainment and detrainment coefficients,
this initial mixing is an undesirable complication. As shown in the next section, the
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analysis is concentrated on the region between this upper outflow and the main
outflow below. The extent of mixing in region I roughly corresponds with the initial
bulk Richardson number, Ri0, as would be expected. As shown in table 1(c), the value
of Ri0 decreases to values much less than unity as M0 increases in these runs.

The Q̂(Z) curves for the 12◦ slope (figure 10c) show the same features as for 6◦,
but with greater magnitude. For most of these runs, Q̂(Z) increases further below
Z = 0, reaching maxima in excess of 1.8 for some runs, near Z = −0.2. The V̂ (Z)
curves (figure 11c) show inflow near Z = 0 due to excess mixing in region I, and
corresponding enhanced outflow above or near Z = −0.4. The oscillations in V̂ for
small M0 are again evident. The lower peak at Z = Zb (the main outflow) again
decreases in amplitude and rises in elevation as M0 increases, to the point (M0 > 0.08)
where it merges with the upper detrainment region and becomes indistinguishable
from it. A small number of experiments were carried out with a slope of 20◦. These
showed V̂ profiles with a similar character to those at 12◦.

The observations for 6◦ and 12◦ therefore show that the fluid mixed in region I
is transported downslope to a level above or near Z = −0.4. From the observations
it was not possible to determine which proportion of this transport was carried by
the dense boundary current, and which was carried by the fluid external to it. The
latter may well be significant. Fluid mixed at the upper boundary of these downflows
mostly remains above the main current, and settles to its neutral density level. This
implies downward motion and transport, to an extent that depends on the relative
fractions of dense and ambient fluid in the mixture. Mixing in region I is mostly
due to disturbances of Kelvin–Helmholtz type, where the fraction of dense fluid in
the mixture is substantial. For instance, fluid that is mixed at Z = 0 and sinks to
Z = −0.3 would contain 30% of dense fluid. In region II, however, the mixing
processes are Holmboe-like. Here thin wisps of dense fluid penetrate the environment,
and the fraction of dense fluid in the resulting mixture is small. This implies that the
net external downslope motion and transport here is correspondingly small, and this
is consistent with video observations of the flow in region II carried out for most
runs. Downflow external to the main current is neglected in the next section, in which
entrainment and detrainment are assumed to depend on properties of the downflow
at the same level.

5. Entrainment and detrainment processes and coefficients
Ee, Ed and k are expected to be functions of the local values of M, Ri and θ, and

in this section we use the results described in § 4 to infer the forms of this functional
dependence based on (3.24)–(3.26). We first need to be able to evaluate M and Ri as
defined by (1.4), as functions of s or Z(= −s sin θ/D). For this purpose, d̄ is readily

measured for each run, Q̂(Z) is obtained as in § 4, and G(Z) is obtained as follows. If
Ee is assumed to be a known function of s, the solution of (3.26) may be written

G(s) = G0h(s)−N2 sin θ h(s)

∫ s

0

1

h(s)
ds, (5.1)

where

h(s) = exp

[
−
∫ s

0

Ee(s
′)

d̄
ds′
]
, (5.2)

and G = G0 ≡ g′0 at s = 0 (in the experiments, G(0) may differ slightly from g′0 because
of processes on the shelf etc., but we assume that this difference is not significant). We
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Figure 12. The mean entrainment coefficient Ēe as a function of M0.

may obtain successive approximations to G(s) by using the fact that Ee is generally
small. For the first of these, we assume that Ee is zero and obtain

G(s) = G0 −N2 sin θ s, (5.3)

which vanishes where s = G0/(N
2 sin θ), or z = −D. An improvement on this may be

obtained by assuming that Ee is constant with s, giving

G = G0 exp (−Ees/d̄)− N2d̄ sin θ

Ee
(1− exp (−Ees/d̄)). (5.4)

We may determine a mean value of Ee by using the condition that G = 0 at the level
where the fluid in the downflow becomes neutrally buoyant, at Z = Zb = −sb sin θ/D.
We identify this depth with the level of the maximum in the main outflow, at the
bottom of the downflow. We may then define this mean value Ēe for Ee by writing

h(sb) = exp

[
−
∫ sb

0

Ee(s
′)

d̄
ds′
]

= exp (−Ēesb/d̄). (5.5)

Using this form in (5.1) with G(sb) = 0 gives a transcendental equation for Ēe in terms
of Zb and d̄ sin θ/D, namely

Zb = −ln(1 + σ)/σ, where σ = Ēe/(d̄ sin θ/D). (5.6)

Values of Ēe obtained by this procedure show a systematic increase with M0, as
shown in figure 12.

These values of Ēe may then be used for Ee in (5.4) to give an approximation to
G(s) in the range 0 < s < sb, or Zb < Z < 0, for each run. If Ee is quite small, as it
is in most runs, (5.4) will capture most of the variation of G(s) for the purpose of
evaluating M and Ri to sufficient accuracy. These may be used to determine forms
for Ee in terms of M and Ri that may then be used in (5.1) to obtain more accurate
values of G(s); in principle, this procedure may be continued iteratively, but this is
not done here. Profiles of M and Ri using G(s) from (5.4) with the values of Ēe for
Ee, are shown in figure 13 for some representative runs for the slopes 3◦, 6◦ and 12◦.



260 P. G. Baines

0

–0.2

–0.4

–0.6

–0.8

–1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0
10–3 10–2 10–1 100 101 10–3 10–2 10–1 100 101

10–3 10–2 10–1 100 101 10–3 10–2 10–1 100 101

10–3 10–2 10–1 100 101 10–2 10–1 100 101102

(a) (b)

(c) (d)

(e) ( f )

M Ri

Z

Z

Z 0.0130
0.0408
0.0435
0.0443
0.0549
0.1016
0.1625
0.1858
0.1929
0.2215

M0

0.0130
0.0408
0.0435
0.0443
0.0549
0.1016
0.1625
0.1858
0.1929
0.2215

M0

0.0025
0.0012
0.0036
0.0062
0.0068
0.011
0.0184
0.0932
0.0614
0.0362

M0

0.0025
0.0012
0.0036
0.0062
0.0068
0.011
0.0184
0.0932
0.0614
0.0362

M0

0.001
0.0026
0.005
0.0063
0.0102
0.0306

M0 0.001
0.0026
0.005
0.0063
0.0102
0.0306

M0

Figure 13. Profiles of Ri and M with depth Z for various slope angles. (a) M at 3◦, (b) Ri at 3◦,
(c) M at 6◦, (d) Ri at 6◦, (e) M at 12◦, (f) Ri at 12◦. For each run, the data contain 200 points
(approximately) covering the range −1 < Z < 0, and only every fifth point is plotted here. The
values of Ri have been computed using the values of d̄ given in table 1(a, c, d).

These cover the range from Z = 0 down to the lowest mimimum in V̂ before the
final peak. In general, M increases monotonically with distance downward, but the
behaviour of the Richardson number is more varied – for some runs at 3◦ and 6◦ it is
approximately constant, for others it decreases monotonically, and for most 12◦ runs
it oscillates with depth.

We now proceed to obtain expressions for Ed, Ee and k in terms of M, Ri and
θ from the data, for region II below the influence of region I. In spite of these
restrictions, this is a very extensive region covering at least half the downflow in most
cases. We begin with Ed − Ee, which may be determined from (3.24) as a function of
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Z or M in the form

Ed − Ee = − d̄
Q

∂Q

∂s
=
d̄ sin θ

DQ̂

∂Q̂

∂Z
= − d̄ sin θV̂

DQ̂
, (5.7)

since the quantities on the right-hand side have all been determined by observation.
Profiles of −(V̂ /Q̂)d̄/D are shown plotted against M in figure 14 on a log-log scale for

slope angles 3◦, 6◦ and 12◦. Only the ranges where V̂ is negative have been included
here, down to the minimum in |V̂ | just above the main outflow; this includes most
of the downflow, as figure 11 shows. For each run, the ordinate (Ed − Ee)/ sin θ rises
rapidly from a small value, and then appears to asymptote to a common power law
relationship. Since M increases with distance downslope, the initial rise is interpreted
as a rapid adjustment by the turbulence and mixing to an equilibrium state that
depends on the local value of M, which is then maintained throughout the remainder
of region II of the downflow. There curves appear to show that (Ed − Ee)/ sin θ is
determined by the local value of M in each case, and increases monotonically with
it. In contrast, as figure 13 shows, Ri does not vary monotonically with depth, and
its behaviour may differ from run to run. Plots of (Ed − Ee)/ sin θ against Ri show
considerable scatter between runs, with no systematic variation, and for some runs
Ed − Ee varies considerably while Ri varies hardly at all. This behaviour appears to
exclude any explicit dependence of Ed − Ee on Ri. For each slope angle, if the initial
rapid rise region for each run is excluded, the data may be fitted with a power law
relationship of the form

Ed − Ee = BMα sin θ. (5.8)

The parameters α and B have been determined for each slope angle, including the
observations at 4.5◦. There is considerable scatter in the results, as seen in figure 14,
and there is a suggestion that α decreases as θ increases, but this trend is not regarded
as significant. Hence mean values of B and α have been chosen for all four slope
angles, and overall the asymptotic line may be reasonably fitted by

B = 0.2± 0.05, α = 0.4± 0.1. (5.9)

With these values for α and B, equation (5.8) is shown as the straight line fit to
the asymptotic form of the data with increasing M, in figures 14(a), 14(b) and 14(c).
Equations (5.8) and (5.9) then give a relationship for Ed−Ee that is applicable to the
main body of the downflow, namely region II.

We next determine the functional form of Ee(M,Ri, θ). This is not straightforward,
because we do not have direct observations of Ee as a function of depth. For
guidance we may look to the work of Ellison & Turner (1959), who established that
the entrainment coefficient Eh for homogeneous flows is a decreasing function of
the bulk Richardson number Ri. This is because the local value of the Richardson
number controls the stability of the flow to infinitesimal disturbances, and the bulk
Richardson number Ri controls the degree of turbulence and mixing resulting from
growing disturbances in unstable flows. Eh is represented to good accuracy by (Turner
1986)

Eh =
0.08− 0.1Ri

1 + 5Ri
, (5.10)

but this implicitly assumes that entrainment for Ri > 0.8 is negligible, and this range
is important in these experiments. An equivalent approximate expression that covers
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Figure 14. Plots of the function −(V̂ /Q̂)d̄/D = (Ed − Ee)/ sin θ as a function of the local M value,
for all runs for the slope angles (a) 3◦, (b) 6◦ and (c) 12◦. The plotted points denote every fifth datum
point as in the previous figure. The straight lines denote the estimated asymptote for increasing M
for all curves, corresponding to α = 0.4 (see equation (5.9)). The asymptotes are displaced upwards
for clarity – the actual asymptotes pass through the point (1, 0.2).

the range of Ri > 0.1 is (Lofquist 1960; Turner 1973; Fernando 1991)

Eh ≈ 0.001

Ri
. (5.11)

As discussed in § 3, Eh is defined differently from Ee, but its behaviour indicates that we
may expect Ee also to be a decreasing function of Ri, and for the same physical reasons.
The entrainment of fluid into the downflow depends on the local turbulent eddies,
which are characterized by Ri, and are not sensitive to the environmental stratification.
Hence the value N of the stratification should be of secondary importance, and so
should M.

Figure 12 shows that Ēe may be roughly described by Ēe ≈ 0.1Mγ
0 , where γ 6 1.

However, M0 and Ri0 are not entirely independent, since

Ri0 =
G0d̄

3

Q2
0

=
G0D

3

Q2
0

(
d̄

D

)3

=
1

M2
0

(
d̄

D

)3

. (5.12)

As shown in figure 9, d̄/D shows an approximate power law relationship with M0,
with a mean exponent of about 0.5. Hence the mean value of Ee, Ēe, is a decreasing
function of Ri0, and for the 6◦ and 12◦ slopes in particular, may be approximately
described by

Ēe ≈ const

Ri0
. (5.13)
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For many of the 3◦, 4.5◦ and 6◦ runs the variation in Ri with Z is small, and this
suggests that an expression of this sort applies generally between Ee and Ri, with no
explicit dependence on M. Accordingly we fit the expression

Ee = C1Ri
−β, (5.14)

where C1 is a constant, by integrating it over Z for each run for the slope angles of
3◦, 4.5◦, 6◦ and 12◦, in the form

Ēe =
1

|Zmin|
∫ 0

Zmin

EedZ =
CI

|Zmin|
∫ 0

Zmin

dZ

Riβ
, (5.15)

for each of the values of β = 0.5, 0.75, 1.0 and 1.25. Zmin is taken to be the level of
the lowest minimum in |V̂ |, immediately above the main outflow, which assumes that
negligible entrainment occurs below this level. The value of C1 is then determined
by equating the resulting value of Ēe with the observed value, and the objective is to
find values of C1 and β that apply to all runs for each slope angle. Note that this
calculation includes both region I and region II. The results of these calculations are
shown in figure 15. We consider first the runs with slope angles 3◦, 6◦ and 12◦. In
general, the choice of β = 1.0 provides the best fit for all three slope angles. It could
be argued that β = 1.25 is almost as good, but it is clear that β = 0.5, 0.75 give
much greater scatter and are not satisfactory. With β = 1.0 the least-squares fit gives
a mean value of C1 = 0.00012 for both the 6◦ and 12◦ slopes (figures 15c and 15d).
There are some large values of C1 at the low Reynolds number end of the range, and
these are disregarded as containing different physics and not relevant to the turbulent
high Reynolds number regime. Excluding this range, the scatter of C1 values about
this mean is of order ±20%, and is uniform with M0. The same is found for the 3◦
runs, excluding the runs with Re 6 350, except that here there is more scatter and the
mean value for C1 = 0.0008. This value is close to the value 0.001 in equation (5.11),
for horizontal flows (θ = 0◦) in homogeneous environments. We may expect the same
value to also apply here in this limit, since any effect of external stratification should
be small for horizontal flows.

This difference in the magnitude of the entrainment coefficient for 3◦ and 6◦ by a
factor of nearly seven for the same value of Ri is surprising, and has been investigated
further by carrying out the series of runs at 4.5◦ slope. These are shown in figure 15(c),
and mostly conform to a mean intermediate value of 0.00025, except for some large
values at the high end of the range, of order 0.001. This is taken to imply that the
value of C1 is sensitive to the slope angle in this range of small values, with a rapid
transition from values of order 0.001 near zero slope, to values of order 0.00012 for
slopes greater than 5◦. The data suggest, and it is reasonable to suppose, that C1 is not
sensitive to θ at the origin. This implies that horizontal flows are not sensitive to very
small slope angles, and this is assumed here. It is noteworthy that the observations of
d̄/D for θ = 4.5◦ shown in figure 9 indicate a different trend with M0 from the others,
with the values resembling those for 6◦ for small M0, and those for 3◦ at large M0. The
data points for C1 are shown in figure 16, together with a simple piecewise-smooth

Figure 15. The parameter C1 in the inverse power law expression for Ee in terms of Ri, for various
values of the exponent β = 0.5, 0.75, 1.0, 1.25 (equation (5.15)), for the bottom slopes (a) 3◦,
(b) 4.5◦, (c) 6◦, (d) 12◦. Note that (a) and (b) have a common scale that differs from that for (c)
and (d).
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Figure 16. Observational points for the entrainment factors C1 and the piecewise smooth fit for
interpolation (equation (5.16)).

fit to these points, given by

C1(θ) = 0.001 + 10−5(1.3689θ2 − 1.1970θ3), 0 < θ < 4.1◦,
= 0.00012− 10−5(2.1714(θ − 6)2 + 5.2995(θ − 6)3), 4.1◦ < θ < 6◦,
= 0.00012, θ > 6◦. (5.16)

This expression should be regarded as approximate, determined as it is by five mean
values and assumed zero gradients at the origin and 6◦. The upper limit of the range
of θ for this expression is also uncertain, but these experiments indicate that it extends
at least to 12◦. Hence the expression for the entrainment coefficient is

Ee =
C1(θ)

Ri
. (5.17)

From (5.8), the detrainment coefficient Ed is then given by

Ed =
C1(θ)

Ri
+ 0.2M0.4 sin θ. (5.18)

We next consider the drag term in the momentum equation (3.25), which may be
estimated as follows. Detrainment of fluid from the downflow implies a loss of
momentum, with a flux of magnitude EdUρU, where U = Q/d̄. On the other hand,
entrainment incorporates fluid with no momentum into the current, and hence does
not add a corresponding term. Hence we may write

k = Ed + CDU, CD = CDL + CDU, k + CDL = Ed + CD, (5.19)

where CDU represents drag on the upper surface that is not associated with an
exchange of fluid. CD represents the total drag apart from that due to fluid transfer.
This is primarily associated with the drag of the rigid lower surface (and sidewalls),
so that CDU � CDL, and is dependent on Re. Measurements by Lofquist (1960) of
flow of a dense layer over a horizontal surface beneath a deep homogeneous upper
layer indicate that a suitable approximate form for this in the present circumstances
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is (fitted to data in figure 5 of Lofquist’s paper)

CD = 7/Reex, Reex 6 103,

= 0.0556/Re0.3
ex , 103 < Reex < 104,

(5.20)

where Reex is an extended Reynolds number defined by

Reex = Re/(1 + 2d̄/b), (5.21)

where b is the breadth of the tank. Equation (5.20) is convenient but is probably an
underestimate of the drag, partly because it takes no account of the stratification in
the environment.

With these expressions for k and CD , (3.25) may be expressed in the form

(Ri− 1)
∂d̄

∂s
= Ed − 2Ee − CD(Reex) + Ri

(
tan θ +

Ee

2
+

sin θ

2

(
RiM2

cos θ

)1/3
)
. (5.22)

From the steady-state experiments, where the variation of d̄ with s is observed to be
very small, we may infer that the terms on the right-hand side collectively vanish,
giving an expression for Ri in terms of M, θ and Reex

Ri =
CD(Reex) + C1(θ)(1/Ri− 1

2
)− 0.2M0.4 sin θ

tan θ(1 + 1
2
(RiM2 cos2 θ)1/3)

≈ CD(Reex)

tan θ
− 0.2M0.4 cos θ. (5.23)

This expression may then be used to give a diagnostic relation for d̄ from

d̄ =

(
Q2Ri

G cos θ

)1/3

. (5.24)

The variations in Ri seen in figure 13(b, d, f) may now be understood as due to
changes in Reex and M between runs, and with downslope position. Reex decreases
and M increases with downslope distance, and the relative constancy of Ri at small
slope angles is due to a balance between these two factors in (5.23).

6. Conclusions and discussion
Several novel features of flows down gentle slopes (6 12◦) into stratified environ-

ments have been described, as follows.
1. The downflow consists primarily of a boundary current with a sharp upper

interface, maintained by the tendency of mixed fluid to find its own level in the
stratified environment.

2. The flow contains three main regions, denoted I, II and III, ordered by distance
downslope. Region I is an initial adjustment region, and region II comprises most of
the current, in which the dense downflow has approximately constant mean thickness.
It continuously loses fluid to the environment (detrainment) and gains it due to
entrainment. In region III the fluid remaining at the end of the downflow finds its
own neutral level.

3. Three distinct flow regions may also be identified with increasing distance normal
to and above the slope. The first is the dense downflow itself, bounded by the interface;
the second is the mixing region above the downflow; and the third is the external
environment, which contains some motion due to the movement of partially mixed
fluid finding its neutral level.
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4. For small values of M0 (< 0.01), periodic small-scale variation with z in the net
detrainment is observed. These variations are attributed to the effect of columnar dis-
turbance modes on mixing, where these modes have been excited by the concentrated
main outflow in region III.

5. Mixing in region I can be substantial, increasing Q̂ above unity and causing a
broad upper level maximum in net outflow. This effect increases with slope angle,
and is most noticeable at 12◦ in these experiments.
These experiments have not been exhaustive, and some of these features deserve
further study.

A model for turbulent downslope flows into stratified environments, based on ob-
servations of flow in region II, has been derived and is represented by equations (3.6),
(3.16) and (3.21), which may be expressed as

∂d̄

∂t
+
∂Q

∂s
= (Ee − Ed)Q

d̄
, (6.1)

d̄

Q

∂G

∂t
+
∂G

∂s
= −N2 sin θ − EeG/d̄, (6.2)

d̄2

Q2

∂Q

∂t
+ (Ri− 1)

∂d̄

∂s
= Ed − 2Ee − CD(Reex)

+Ri

(
tan θ +

Ee

2
+

sin θ

2

(
RiM2

cos θ

)1/3
)
, (6.3)

with Ee and Ed given by (5.17) and (5.18). This model incorporates the effects of
mixing, and constitutes an integrable system. For steady flow, d̄ has been observed to
be constant, and by using this, (6.3) can be replaced by a diagnostic equation for d̄
from (5.23), (5.24). These functional relationships have been determined for a uniform
slope, but the resulting expressions should also be applicable to non-planar slopes
and regions of variable stratification, where θ and/or N vary with s, provided that this
variation is sufficiently gradual for the turbulence to adjust in a quasi-static manner.

The forms of the variation of Ee, Ed and k with M, Ri and θ contain information
about the nature of the turbulent eddies that accomplish the transfers. The dependence
of Ed−Ee onM and θ is not surprising: larger slope angles and stronger environmental
stratification imply larger detrainment per unit length of slope. The fact that Ee
decreases monotonically with increasing Ri is also consistent with previous models
(Fernando 1991), and can be understood from the common expectation that Ri
controls the rate of growth of unstable disturbances, and hence the consequent mixing
events – smaller Ri implies greater instability. However, the reason why the parameter
C1 (and hence Ee for constant Ri) decreases with increasing slope angle requires
some discussion. For horizontal flow (θ = 0◦), such as in a conventional gravity
current driven by an imperceptible pressure gradient, the maximum shear in the flow
occurs at the density interface. The resulting disturbances have the form of Kelvin–
Helmholz instabilities and billows, and are generally symmetric about this interface.
These properties are only slightly affected if the upper flow is stratified. However,
for the case of flow down a slope of inclination 6◦ or greater, the mean velocity and
density profiles are driven by buoyancy and have the form shown in figure 17. Here
the maximum in the shear occurs above the interface. This profile is also subject
to shear instability with the resulting eddies concentrated near the maximum mean
shear gradient, above the interface (Baines & Mitsudera 1994; Baines 1995). These
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Figure 17. A schematic diagram showing the mean velocity profile in region II for 6◦ slope, and
the process of Holmboe instability, which is due to the mutual interaction between a gravity wave
on the interface and a vorticity wave on the vorticity gradient above it (see Baines & Mitsudera
1994; Baines 1995). The main dynamical forces maintain the mean velocity and density profiles, so
that the instability process keeps recurring, and wisps of detrained fluid result. r here denotes the
coordinate normal to the slope.

eddies sweep the interface and detach wisps of fluid from it, as may be seen in
figures 3(b) and 3(c). Accordingly, their capacity for mixing fluid within the downflow
is considerably reduced when compared with that of eddies that coincide with the
maximum in density gradient. This mixing is quantitatively represented by equation
(5.17), and the difference is reflected in the value of the entrainment coefficient C1,
which varies by an order of magnitude between 0◦ and 6◦.

Other authors have noted sensitivity of the behaviour of dense fluid released on
slopes to the slope angle, when the latter is small. Changes in the flow when the slope
increases from zero to angles greater than about 5◦ have been described by Britter &
Linden (1980) for gravity current heads, and by Beghin, Hopfinger & Britter (1981) for
negatively buoyant clouds. These experiments were for homogeneous environments,
and showed the change from a near-horizontal gravity current dominated by bottom
friction, to near thermal-like behaviour, dominated by buoyancy and mixing with the
environment.

The ranges of values M, Ri and θ covered in the present experiments are very large
(see figure 13), and generally include those realized in larger-scale environmental flows.
This suggests that the mixing parameterizations (5.17), (5.18) may be applicable to
these situations. Specific examples are katabatic flows down hillsides (e.g. Manins &
Sawford 1979) and over the Antarctic continent (Schwerdtfeger 1984; Pettré & André
1991), driven by radiative cooling in the atmosphere, and for deep flows in the ocean
(e.g. Price & Baringer 1994; Baines & Condie 1998). One important parameter is
the drag coefficient CD(Re), which decreases with increasing Re to a value of about
0.004 (Garratt 1992). For the flows described by the present model, (5.23) implies that
Ri must also decrease with increasing Re, implying greater mixing. It also implies
that the model should break down if CD is sufficiently small, or the slope angle is
sufficiently large, since Ri must be positive. In the present experiments, this angle was
found to be between 12◦ and 30◦, with the flows at steeper angles having more of the
character of a turbulent plume than of the downslope gravity current described here.
Experiments with this different regime have been carried out and will be reported
elsewhere.
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